Deriving The Formula For arsinh(x)

Let \(y= \sinh(x)\):

\[ y = \frac{e^x - e^{-x}}{2}\]

In order to find the formula for the inverse of \(\sinh\) we need to make \(x\) the subject of the above formula.

\[ 2y = e^x - e^{-x}\]

If we multiply both sides by \(e^x\):

\[\begin{gathered} 2ye^x = (e^x)^2 - 1 \\ - (e^x)^2 + 2ye^x + 1 = 0 \end{gathered}\]

Let \(v = e^x\):

\[- v^2 + 2yv + 1 = 0 \]

We can use the quadratic formula here:

\[v=\frac{-(2y) ± \sqrt{(2y)^2 - 4(-1)(1)}}{2(-1)} = \frac{-2y ± \sqrt{4y^2 + 4}}{-2} \]

Simplifying:

\[v = \frac{-2y ± 2\sqrt{y^2 + 1}}{-2} = y ∓ \sqrt{y^2 + 1} \]

Since \(v=e^x\):

\[x = \ln(y ∓ \sqrt{y^2 + 1}) \]

The domain of \(\ln(a)\) is \(a \in (0,\infty)\). This means \(y ∓ \sqrt{y^2 + 1}\) cannot be negative. Since \(y - |\sqrt{y^2 + 1}|\) is negative for all \(y>0\) and \(y + |\sqrt{y^2 + 1}|\) is positive for all \(y>0\), then the input for \(\ln\) can only be \(y+|\sqrt{y^2 + 1}|\):

\[x = \ln(y + | \sqrt{y^2 + 1}|) \]

Styles

(uses cookies)