Equivalence of the component-wise definition and the geometric definition

Let vectors \(\textbf{v}\) and \(\textbf{u}\) be defined as follows:

$$ \textbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \quad \textbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} $$

The dot product \(\textbf{v} \cdot \textbf{u}\) is defined as follows:

$$ \textbf{v} \cdot \textbf{u} = v_1u_1 + v_2u_2 + v_3u_3 $$

This is the component-wise definition. Let's the angle between the vectors is \(\theta \lt 90^{\circ}\):

Image from opentstax.org (Calculus 3)

This means \(\textbf{v}\), \(\textbf{u}\), \(\textbf{v}-\textbf{u}\) can form a triangle:

Image from opentstax.org (Calculus 3)

According to the cosine rule from trigonometry:

$$ \Vert \textbf{v} - \textbf{u} \Vert^2 = \Vert \textbf{v} \Vert^2+ \Vert \textbf{u} \Vert^2 -2(\Vert \textbf{v} \Vert \ \Vert \textbf{u} \Vert) \cos(\theta) $$

Since the square of a vector's magnitude is the dot product of that vector with itself:

$$ \Vert \textbf{v} - \textbf{u} \Vert^2 ={\color{red} (\textbf{v} - \textbf{u} )} \cdot {\color{green}(\textbf{v} - \textbf{u})} $$

According to the distributive property:

$$\begin{align} \Vert \textbf{v} - \textbf{u} \Vert^2 &= ({\color{red} (\textbf{v} - \textbf{u} )} \cdot {\color{green}\textbf{v}}) - ({\color{red} (\textbf{v} - \textbf{u} )} \cdot {\color{green}\textbf{u}}) \\ &= \textbf{v}\cdot \textbf{v} - \textbf{u} \cdot \textbf{v} -\textbf{v} \cdot \textbf{u}+ \textbf{u}\cdot\textbf{u} \\ &= \Vert \textbf{v} \Vert ^2- 2\textbf{u} \cdot \textbf{v} + \Vert \textbf{u}\Vert^2\end{align}$$

This means:

$$\begin{align} \Vert \textbf{v} - \textbf{u} \Vert^2 &= \Vert \textbf{v} \Vert^2+ \Vert \textbf{u} \Vert^2 -2(\Vert \textbf{v} \Vert \ \Vert \textbf{u} \Vert) \cos(\theta) \\ \Vert \textbf{v} \Vert ^2- 2\textbf{u} \cdot \textbf{v} + \Vert \textbf{u}\Vert^2 &= \Vert \textbf{v} \Vert^2+ \Vert \textbf{u} \Vert^2 -2(\Vert \textbf{v} \Vert \ \Vert \textbf{u} \Vert) \cos(\theta)\end{align} $$

Cancelling out like terms:

$$- 2\textbf{u} \cdot \textbf{v} = -2(\Vert \textbf{v} \Vert \ \Vert \textbf{u} \Vert) \cos(\theta) $$

Dividing both sides by -2:

$$ \textbf{u} \cdot \textbf{v} = \Vert \textbf{v} \Vert \ \Vert \textbf{u} \Vert \ \cos(\theta) $$

Styles

(uses cookies)