Proof That The Sum Of The First n Positive Integers = n(n+1)/2

Let \(S_n\) be:

\[S_n = 1 + 2 + 3 + \ldots + n\]

If we write the same thing in reverse:

\[S_n = \textcolor {red} n + \textcolor{red}{n-1} + \textcolor{red}{n-2} + \ldots + \textcolor{red}2 + \textcolor{red}1\]

Adding the corresponding terms gives:

\[2S_n = \left( \textcolor {red} n+1 \right) + \left( \textcolor{red}{n-1}+2 \right) + \left( \textcolor{red}{n-2}+3 \right) + \ldots + \left( \textcolor{red}2+n-1 \right) + \left( \textcolor{red}1+n \right)\]

Simplify:

\[2S_n = \left( n+1 \right) + \left( n+1 \right) +\ldots + \left( n+1 \right) = n \left(n+1 \right)\]

This means:

\[S_n = \frac{n \left( n+1 \right)}{2}\]

Styles

(uses cookies)