If p ≡ 3 mod 4, Then ((p-1)/2)! ≡ ±1 mod p

Wilson's Theorem states:

$$ (p - 1)! ≡ -1 \mod p $$

If we expand:

$$ (1)(2) \ldots \left( \frac{p-1}{2} \right) \left( \frac{p+1}{2} \right) \ldots(p-2)(p - 1) ≡ -1 \mod p $$

Since \(p - x ≡ -x \mod p\):

$$ (1)(2) \ldots \left( \frac{p-1}{2} \right) \left( \frac{p+1}{2} \right) \ldots(-2)(-1) ≡ -1 \mod p $$

Let's take the negative sign out:

$$ (1)(2) \ldots \left( \frac{p-1}{2} \right) \left( \frac{p-1}{2} \right) \ldots(2)(1) \times \left( (-1)^{\frac{p-1}{2}} \right) ≡ -1 \mod p $$

The second half is the same size as the first. If \(p=4k+3\), then \(\frac{p-1}{2} = 2k+1\), which means:

$$ \left ( (1)(2) \ldots \left( \frac{p-1}{2} \right) \right)^2 \times (-1) ≡ -1 \mod p $$

If we multiply both sides by -1:

$$ \left ( \left( \frac{p-1}{2} \right) ! \right)^2 ≡ 1 ≡ 1^2 \mod p $$

According this lemma:

$$ \left( \frac{p-1}{2} \right) ! ≡ ±1 \mod p $$

Styles

(uses cookies)