The solution of a2 ≡ b2 mod p is a ≡ ±b mod p

If \(a^2 ≡ b^2 \bmod p\) (where \(p\) is prime), then:

$$ p|(a^2- b^2) $$$$ p|(a-b)(a+b) $$

Using this lemma, p|(a-b) or p|(a+b):

$$\begin{gather} p|(a±b) \\ a ≡ ±b \mod p \end{gather}$$

Styles

(uses cookies)