If p Is Prime, (ap ≡ bp mod p), (p ∤ a), (p ∤ b), Then ap ≡ bp mod p2

If \(p \nmid a\) and \(p \nmid b\), then:

$$\begin{gather} a^{p-1} ≡ 1 \bmod p \implies a^p ≡ a \bmod p \\ b^{p-1} ≡ 1 \bmod p \implies b^p ≡ b \bmod p\end{gather}$$

If \(a^p ≡ b^p \bmod p\), then \(a ≡ b \bmod p\):

$$ a = b + mp $$

If we raise both sides to the power of \(p\):

$$ a^p = (b + mp)^p $$

Using the binomial theorem:

$$ a^p = {p \choose 0} b^p (mp)^0 + {p \choose 1} b^{p-1} (mp)^1 + {p \choose 2} b^{p-2} (mp)^2 + \cdots + {p \choose {p-1}} b^1 (mp)^{p-1} + {p \choose p} b^0 (mp)^p $$

Since \({p \choose 1} = p\):

$$ a^p = {p \choose 0} b^p (mp)^0 + b^{p-1} m(p^2) + {p \choose 2} b^{p-2} (mp)^2 + \cdots + {p \choose {p-1}} b^1 (mp)^{p-1} + {p \choose p} b^0 (mp)^p $$

Every term other than the first one has a factor of \(p^2\):

$$\begin{align} a^p &= {p \choose 0} b^p (mp)^0 + kp^2 \\ a^p &= b^p + kp^2 \end{align}$$

This means \(a^p ≡ b^p \bmod p^2\).

Styles

(uses cookies)