Proving The Existence And Uniqueness Of A Modular Inverse If (a, m) = 1

If \((a, m) = 1\), then \(ax+my=1\) or \(ax=m(q)+1\), which means:

$$ ax ≡ 1 \mod m $$

Here, \(x\) is the inverse. If \(ab_1 ≡ 1\) and \(ab_2 ≡ 1\), then:

$$ ab_1 ≡ ab_2 \mod m ⇒ m|a(b_1 - b_2) $$

Since \((m, a) = 1\):

$$ m|b_1 - b_2 ⇒ b_1 ≡ b_2 \mod m $$

This shows that the inverse is unique. By 'unique', it means there is only one solution in modulo \(m\).

Styles

(uses cookies)