Proof that a ≡ b (mod m) and c ≡ d (mod m) implies a + c ≡ b + d (mod m)

If \(a ≡ b \bmod m\) and \(c ≡ d \bmod m\):

$$\begin{gathered} a = b + mk \\ c = d + ml\end{gathered}$$

If we add them:

$$\begin{gathered} a + c = b + d + mk + ml \\ a + c = b + d + m(k + l) \end{gathered}$$

This proves that \(a +c ≡ b + d \bmod m\). Using a similar line of reason, we can show \(a -c ≡ b - d \bmod m\).

Styles

(uses cookies)