Formulas For The Curvature Of A Curve

First, we need an intuitive definition for the curvature. For flatter surface, the unit tangent doesn't change much when increasing the arc length. However, for curvier surfaces, the unit tangent vector changes a lot:

Let \(C\) be a smooth curve in the plane or in space given. The curvature \(k\) of the curve is defined as:

\[ k(t) = \left\Vert \frac{d \ \textbf{T}(t)}{d \ s(t)} \right\Vert \]

where \(\textbf{T}(t)\) is the unit tangent vector. This is our first formula for the curvature. Using the chain rule, we know:

\[ \frac{d \ \textbf{T}(t)}{dt} = \frac{d \ \textbf{T}(t)}{d \ s(t)} \frac{d \ s(t)}{dt} \]

Since \(\frac{d \ s(t)}{dt} = \Vert \textbf{r}'(t) \Vert\):

\[ \begin{gather} \textbf{T}'(t)= \frac{d \ \textbf{T}(t)}{d \ s(t)} \Vert \textbf{r}'(t) \Vert \\ \frac{\textbf{T}'(t)}{\Vert \textbf{r}'(t) \Vert}=\frac{d \ \textbf{T}(t)}{d \ s(t)}\end{gather}\]

Substituting this into our formula for the curvature:

\[ k(t) = \left\Vert \frac{\textbf{T}'(t)}{\Vert \textbf{r}'(t) \Vert}\right\Vert = \frac{\Vert \textbf{T}'(t) \Vert}{\Vert \textbf{r}'(t) \Vert} \]

This is our second formula for the curvature. Since \(\textbf{T}(t) = \frac{\textbf{r}'(t)}{\Vert \textbf{r}(t) \Vert}\):

\[ \textbf{r}'(t) = \Vert \textbf{r}'(t) \Vert \textbf{T}(t) = \frac{d \ s(t)}{dt}\textbf{T}(t) \]

Using the product rule for derivatives:

\[ \textbf{r}''(t) = \frac{d^2 \ s(t)}{(dt)^2}\textbf{T}(t) + \frac{d \ s(t)}{dt}\textbf{T}'(t) \]

If we take the cross product of \(\textbf{r}'(t)\) and \(\textbf{r}''(t)\):

\[ \textbf{r}'(t) \times \textbf{r}''(t) = \left[ \frac{d \ s(t)}{dt}\textbf{T}(t) \right] \times \left[ \frac{d^2 \ s(t)}{(dt)^2}\textbf{T}(t) + \frac{d \ s(t)}{dt}\textbf{T}'(t) \right] \]

Since cross product is distributive:

\[ \textbf{r}'(t) \times \textbf{r}''(t) = \left[ \frac{d \ s(t)}{dt}\textbf{T}(t) \times \frac{d^2 \ s(t)}{(dt)^2}\textbf{T}(t)\right] + \left[ \frac{d \ s(t)}{dt}\textbf{T}(t) \times \frac{d \ s(t)}{dt}\textbf{T}'(t)\right]\]

Since \(\textbf{T} \times \textbf{T} = 0\):

\[ \textbf{r}'(t) \times \textbf{r}''(t) = \frac{d \ s(t)}{dt}\textbf{T}(t) \times \frac{d \ s(t)}{dt}\textbf{T}'(t) \]

According to the "multiplication by a constant" rule of cross product:

\[ \textbf{r}'(t) \times \textbf{r}''(t) = \frac{d^2 \ s(t)}{(dt)^2} \left[ \textbf{T}(t) \times \textbf{T}'(t) \right] \]

Since \(\textbf{T}(t)\) is a unit tangent vector, then it's magnitude is always 1. If a vector has constant magnitude, then the derivative vector will always be orthogonal. This means \(\textbf{T}(t)\) and \(\textbf{T}'(t)\) are orthogonal, so \(\Vert \textbf{T}(t)\times \textbf{T}'(t) \Vert = \Vert \textbf{T}(t) \Vert \ \Vert \textbf{T}'(t) \Vert\). This means:

\[\Vert \textbf{r}'(t) \times \textbf{r}''(t) \Vert = \frac{d^2 \ s(t)}{(dt)^2} \Vert \textbf{T}(t) \times \textbf{T}'(t) \Vert = \frac{d^2 \ s(t)}{(dt)^2} \Vert \textbf{T}(t) \Vert \ \Vert \textbf{T}'(t) \Vert \]

Since \(\Vert \textbf{T}(t) \Vert = 1\):

\[\Vert \textbf{r}'(t) \times \textbf{r}''(t) \Vert = \frac{d^2 \ s(t)}{(dt)^2} \Vert \textbf{T}'(t) \Vert \]

This means:

\[\begin{gather} \Vert \textbf{r}'(t) \times \textbf{r}''(t) \Vert = \Vert \textbf{r}'(t) \Vert^2 \Vert \textbf{T}'(t) \Vert \\ \Vert \textbf{r}'(t) \times \textbf{r}''(t) \Vert = \Vert \textbf{r}'(t) \Vert^3 k(t) \end{gather}\]

This leads to the third formula for the curvature:

\[k(t) = \frac{\Vert \textbf{r}'(t) \times \textbf{r}''(t) \Vert}{\Vert \textbf{r}'(t) \Vert^3} \]

Suppose the curve is on a two dimensional plane, and the curve follows is defined by the function \(f(x)\). Then we can define \(\textbf{r}(x) = x \textbf{i} +f(x)\textbf{j} + 0\textbf{k}\). This means:

\[\begin{gather} \textbf{r}'(x) = \textbf{i} + f'(x) \textbf{j} \\ \textbf{r}''(x) = f''(x)\textbf{j}\end{gather}\]

If we take the cross product:

\[ \textbf{r}'(x) \times \textbf{r}''(x) =f''(x) \textbf{k} \]

Therefore:

\[k(x) = \frac{\Vert \textbf{r}'(x) \times \textbf{r}''(x) \Vert}{\Vert \textbf{r}'(x) \Vert^3} = \frac{\Vert f''(x) \textbf{k} \Vert}{\Vert \textbf{r}'(x) \Vert^3}= \frac{| f''(x) |}{\Vert \textbf{r}'(x) \Vert^3} \]

If \(\textbf{r}'(x) = \textbf{i} + f'(x)\textbf{j} \), then \(\Vert \textbf{r}'(x) \Vert = \sqrt{1+ [f'(x)]^2}\):

\[k(x) = \frac{| f''(x) |}{( 1+ [f'(x)]^2 )^{\frac{3}{2}}} \]

This is the fourth formula for the curvature.

Styles

(uses cookies)