Proof Of The Derivative Of sech(x)

We need to find the derivative of \(\operatorname{sech}(x)\):

\[\frac{d}{dx}\operatorname{sech}(x) = \frac{d}{dx}\frac{1}{\cosh(x)}\]

If we derivative this:

\[\frac{d}{dx}\operatorname{sech}(x) = \frac{d}{dx} (\cosh(x))^{-1} = -(\cosh(x))^{-2} (\sinh(x)) \]

This means:

\[\frac{d}{dx}\operatorname{sech}(x) = -(\cosh(x))^{-1}(\tanh(x)) = -\operatorname{sech}(x)\tanh(x)\]

Styles

(uses cookies)