Proof Of The Reduction Formula For tan(x)

Let's say we have this integral:

\[\int \tan^n(x) \ dx \]

We can rewrite this as:

\[ \int \tan^{n-2}(x) \tan^2(x) \ dx \]

Since \(\tan^2(x) = \sec^2(x) - 1\):

\[ \int \tan^{n-2}(x) (\sec^2(x) - 1) \ dx = \int \tan^{n-2}(x) \sec^2(x) \ dx - \int \tan^{n-2}(x) \ dx \]

For now let's focus on just \(\int \tan^{n-2}(x) \sec^2(x) \ dx\). We can use integration by parts to evaluate this. Let \(u = \tan^{n-2}(x)\) and \(v = \tan(x)\):

\[ \begin{aligned} u=\tan^{n-2}(x) &\implies du = (n-2) \tan^{n-3}(x)\sec^2(x) \ dx \\ v = \tan(x) &\implies dv = \sec^2(x) \ dx \end{aligned} \]

This means:

\[\int \tan^{n-2}(x) \sec^2(x) \ dx = \tan^{n-1}(x) - \int (n-2) \tan^{n-2}(x)\sec^2(x) \ dx \]

Rearranging:

\[\int \tan^{n-2}(x) \sec^2(x) \ dx = \frac{1}{(n-1)} \tan^{n-1}(x) \]

Going back to our main integral:

\[\begin{aligned} \int \tan^{n-2}(x) (\sec^2(x) - 1) \ dx &= \int \tan^{n-2}(x) \sec^2(x) \ dx - \int \tan^{n-2}(x) \ dx \\ \int \tan^n(x) \ dx &= \frac{1}{(n-1)} \tan^{n-1}(x) - \int \tan^{n-2}(x) \ dx \end{aligned}\]

Styles

(uses cookies)